
Journal of Genetics and Genetic Engineering 

Volume 1, Issue 1, 2017, PP 58-67 

  
 

 

Journal of Genetics and Genetic Engineering V1 ● I1 ● 2017                                                                         58 

CRISPR-Cas9 Induced Genome Editing, New Hope for Plant 

Molecular Biology: A Review 

Kaushik Kumar Panigrahi*, Jyotshnarani Pradhan
1
, Rama Krishna Satyaraj Guru

2
, 

Abhiram Dash and Ayesha Mohanty 

Orissa University of Agriculture & Technology (OUAT), Bhubaneswar, India. 

1Banaras Hindu University (BHU), Varanasi, India. 

Indira Gandhi Krishi Viswavidyalya, Raipur, India. 

*Corresponding Author: Kaushik Kumar Panigrahi, Orissa University of Agriculture & 
Technology (OUAT), Bhubaneswar, India. 

 

INTRODUCTION 

Early approaches to targeted DNA cleavage 

were through use of   oligonucleotides, small 

molecules   or   self splicing   introns   for   site-

specific    recognition    of DNA sequences. 
Oligonucleotides coupled to chemical cleavage/ 

cross linking reagents such as bleomycin and 

psoralen (Tabassum et al., 2017).  These 
methods were notrobust     for site specific 

genome modification. Although Zinc Finger 

Nucleases (ZFN’s)  and  TALENs  are  effective  
genome editing  reagents  they  are  not  widely  

adapted  because  of  the  difficulty  and  

validating  such  proteins for a specific DNA 

locus of interest (Doudna and Charpentier, 

2014). In 2010, Fyodor Urnov and his 

colleagues made explicit the reasons for 

adopting the expression genome editing to 
designate the use of the newly designed DNA 

scissors: the fact that they cut at precise 

positions in the genome with a limited number 

of off-targets, that their action does not lead to 

the insertion in the genome of additional 
sequences, and that they permit the efficient 

replacement of a mutated copy of a gene by a 

normal version of it were all good reasons to 
speak of genome editing (Urnov et al. 

2010).The editing or proofreading capacity of 

DNA polymerase, and in particular of the 

famous Klenow fragment of DNA polymerase-I 
extensively used in genetic engineering, 

wasscrutinized (Morange, M. 2016). The 

reliability of the information stored in DNA was 
not the consequence of the chemical stability of 

this macromolecule, but of these editing 

processes as well as of the repair mechanisms 

(Loeb and Kunkel 1982). The recent 
development of genome editing technology 

using programmable nucleases such as zinc 

finger nucleases (ZFNs); transcription activator-
like effector nucleases (TALENs); clustered 

regularly interspaced short palindromic repeats 

(CRISPR) and CRISPR-associated (Cas) 
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proteins (CRISPR/Cas) (Kim and Kim 2014) 

shed light on a new plant breeding approach; 
this technique can minimize the degree to which 

the target genome is genetically modified and 

can increase the specificity of the target locus 

(Shan et al. 2013; Araki & Ishii 2015; Baltes 

and Voytas 2015; Kanchiswamy et al. 2015). 

WHAT IS CRISPR/CAS9? 

The Clustered Regularly Interspaced Short 

Palindromic Repeats (CRISPR) Type II system 

is a form of prokaryotic immunity that has been 
adapted for genome engineering (Bolotin et al., 

2005). It consists of two components: a specific 

guide RNA (gRNA) and a non-specific 
CRISPR-associated endo nuclease protein from 

Streptococcus pyogenes (Cas9) (Fig.1). 

Identified in archaea and bacteria, short nucleic 
acid sequences are captured from invading 

pathogens and integrated in the CRISPR loci 

amidst the repeats. Small RNAs, produced by 

transcription of these loci, can then guide a set 
of endo nucleases to cleave the genomes of 

future invading pathogens, thereby disabling 

their attacks (Gilbert et al, 2013). 

 

Fig1. A simplified diagram of a CRISPR Locus in Bacteria (Courtsey: Steph Yin) 

 

Fig2. CRISPR comprises a single molecule of RNA (shown in purple) that performs two jobs; One end binds to 

the target gene (dark red), the other end delivers a DNA-cutting enzyme (in this case, Cas9) to the site. 

(Courtsey: Bernie Hobbs) 

In nature, Prokaryotes store small palindromic 

segments of DNA that are interspaced with 
other fragments of genetic material. These 

segments fall between CRISPR loci and 

correspond to fragments of viral DNA that the 
cell has previously encountered. After a 

prokaryotic cell successfully clears a viral 

infection or encounters a foreign plasmid, it 
stores fragments of foreign DNA as a way to 

retain a genetic memory in order to recognize 

and disable future infections. The main 

characteristic of CRISPR/Cas9 system is the 
Cas9 protein, (Fig. 2) which comprises two 

functional domains: the RuvC-like domain and 

the HNH nuclease domain (Cong et al., 

2013).The endo nuclease Cas9 can be guided by 

a synthetic single-guide RNA to recognize 

target sequences and produce double strand 

breaks (DSBs) at desired target sites (Cong et 

al., 2013 and Jinek et al., 2012).DSBs 
subsequently cause a series of complex DNA 

self-repair mechanisms in the cell and generate 

various site-specific genetic alterations through 
non-homologous end joining (NHEJ) or 

homology-directed repair (HDR). The NHEJ 

pathway is error-prone and typically generates 
insertions or deletions (indels) within the target 

sequence (Zhou H et al., 2014). When these 

indels introduce a frame-shift mutation or 

disrupt important functional domains, the 
functions of the target genes will be damaged 

(Shan Q et al, 2013; Zhou et al., 2014 and 

Gratzet al., 2013). The possibility of 
homologous recombination will significantly 

increases in the present of homologous DNA 

fragments during the repair process (Fig 3). In 

https://motherboard.vice.com/en_us/contributor/steph-yin
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addition, the recombination efficiency caused by 

double strand breaks can be improved by one 

thousand-fold (Rouet et al., 1994). 

 

Fig3. A diagram comparing how CRISPR works (Courtsey: CRISPR Bio-informatics R & D) 

Less than 5 years ago the CRISPR/Cas nuclease 

was first introduced into eukaryotes, shortly 
becoming the most efficient and widely used 

tool for genome engineering (HolgerPuchta. 

2017). Editing a gene by CRISPR/Cas9 only has 

three requirements: (1) expression of the nuclear 
localized Cas9 protein; (2) production of a guide 

RNA (gRNA) molecule, whose first 20 

nucleotides are complementary to the target 
gene; (3) the NGG PAM site that is located 

immediately adjacent to the 30 end of the target 

sequence (Li et al., 2017). Methods to 

specifically target and modify DNA sequences 
are indispensable for basic and applied research. 

Recently, the type II bacterial clustered, 

regularly interspaced, short palindromic repeats 
(CRISPR) system emerged as a simple and 

efficient tool to target and modify DNA 

sequences of interest in a variety of organisms 

(Fig 4). There are two components to the 
CRISPR system: a nuclear localized CRISP 

associated (Cas) 9 protein and a guide RNA 

(gRNA) as proposed by Pattanayak et al., 

2013. Cas9 is a large protein containing two 
nuclease domains, and the most commonly used 

one is derived from Streptococcus pyogenes. 

The gRNA is a synthetic 100 nucleotide (nt) 
RNA molecule, of which the first approximately 

20 nt are the targeting site, and the 3′ end forms 

a hairpin structure that interacts with the Cas9 

protein (Jinek M et al., 2012) Cas9 and the 
gRNA interact to identify DNA sequences 

complementary to the gRNA (Basak and 

Nithin, 2015) and generate a DNA double 
strand break (DSB) (Fig 5). 

 

Fig4. A diagram comparing how CRISPR works in the bacterial immune system and how it works in 

CRISPR/Cas9 genome editing. (Image by H.Adam Steinberg). 
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Fig5. The guide RNA (sgRNA) directs Cas9 to a specific region of the genome, where it induces a double-strand 

break in the DNA. On the left, the break is repaired by non-homologous-end joining, which can result in 

insertion/deletion (indel) mutations. On the right, the homologous-directed recombination pathway creates 

precise changes using a supplied template DNA. [Credit: Ran et al. (2013). Nature Protocols.] 

Invented in 2012 by scientists at the University 

of California, Berkeley, CRISPR/Cas9 has 
received a lot of attention these years. Scientists 

in Japan were the first to discover CRISPR in 

the DNA of bacteria in 1987. In their attempts to 
study a particular protein-encoding gene in 

E.Coli, the researchers noticed a pattern of 

short, repeating, palindromic DNA sequences 

separated by short, non-repeating, "spacer" 
DNA sequences. Francisco Mojica was the first 

researcher to characterize what is now called a 

CRISPR locus, reported in 1993. He worked on 

them throughout the 1990s, and in 2000, he 
recognized that what had been reported as 

disparate repeat sequences actually shared a 

common set of features, now known to be 
hallmarks of CRISPR sequences (he coined the 

term CRISPR through correspondence with 

Ruud Jansen. The Timeline of CRISPR Cas9 

presented in Fig. 6, thoroughly described by 
Leaders in Pharmaceutical Business Intelligence 

(LPBI) group.   

 

Fig6. Timeline & History of CRISPR Cas 9 (Courtsey: Leaders in Pharmaceutical Business Intelligence 

(LPBI) group) 

GENOME EDITING IN AGRICULTURAL 

SCIENCES 

Genome editing provides new approaches to 
reach objectives in food security, but uncertainty 

among regulators and segments of the public 

regarding the associated benefits and risks may 

impede implementation (Bortesi L. & Fischer, 

2015). This Review will meet a need for clarity 

by examining several aspects of genome editing 

of plants and animals for food, feed, fuel, and 

fibre including methods, applications and 
relation to other methods for improving plant 

and animal genetics, and issues impacting 

effective governance. An objective summary 

will help regulatory agencies and interested 
public stakeholders better understand the 

technology (Zhang Y. et al 2016). In recent 

years, sequence-specific nucleases (SSNs) have 
been demonstrated to be powerful tools for the 

improvement of crops (Shan Q. et al. 2013) via 
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gene-specific genome editing, and 

CRISPR/Cas9 is thought to be the most 
effective SSN (Deltcheva et al., 2011). Here, 

Wang reported the improvement of rice blast 

resistance by engineering a CRISPR/Cas9 SSN 
(C-ERF922) targeting the OsERF922 gene in 

rice (Wang et al.,2016; Miah G et al., 2013). 

TALENs (transcription activator-like effectors 

nucleases) and CRISPR/Cas (clustered regularly 
interspaced short palindromic repeats and 

CRISPR-associated proteins) are potent 

biotechnological tools used for genome editing. 
In rice, species-tailored editing tools have 

proven to be efficient and easy to use 

(Christian et al., 2010). Both tools are capable 
of generating DNA double-strand breaks 

(DSBs) in vivo and such breaks can be repaired 

either by error-prone NHEJ (non-homologous 

end joining) that leads to nucleotide insertions 

or deletions or by HDR (homology-directed 

repair) if an appropriate exogenous DNA 
template is provided (Bi and Yang, 2017).  As 

per the Joel McDade’s research blog delivering 

of CRISPR Cas9 components to plant cell 
presented in Fig. 7. CRISPR components can be 

expressed stably or transiently depending on the 

delivery method and cell type in question. 

 CRISPR components can be delivered and 
expressed transiently using a standard detergent, 

Polyethylene Glycol (PEG), although the 

application of this approach is limited to 
protoplast cells (plant cells whose cell wall has 

been removed).  Another common delivery 

method is agro bacterium-mediated delivery, 
which uses the soil derived bacterium 

Agrobacterium tumefaciens as a vehicle to 

deliver your gene of interest into a target cell 

line or organism (Fig. 7).  

 

Fig7. Delivering CRISPR Cas9 components to plant cell (Courtsey: Sattar MN) 

Sequence-specific nucleases have been applied 

to engineer targeted modifications in polyploidy 

genomes, but simultaneous modification of 

multiple homoeoalleles has not been reported 
(Wang et al., 2014). They used transcription 

activator-like effectors nuclease (TALEN) and 

clustered, regularly interspaced, short palindromic 
repeats (CRISPR) - Cas9 technologies in 

hexaploid bread wheat to introduce targeted 

mutations in the three homoeoalleles that encode 
MILDEW-RESISTANCE LOCUS (MLO) 

proteins. Genetic redundancy has prevented 

evaluation of whether mutation of all three 

MLO alleles in bread wheat might confer 

resistance to powdery mildew, a trait not found 

in natural populations. 

Similarly, knockdown of expression of the rice 

ERF gene OsERF922 by RNA interference 
(RNAi) enhanced rice resistance to M. oryzae, 

indicating that OsERF922 acts as a negative 

regulator of blast resistance in rice. A total of 22 
dominant and 9 recessive BB resistant genes 

have been identified (Nino et al., 2006 and 

Wang C. et al., 2009). Some of which have 
been widely used in rice production. Among 

these genes, Xa21 is the best studied for BB 

Resistance. Through phosphorylation (Chen X 

et al., 2010 and Park et al., 2008) and cleavage 

http://blog.addgene.org/author/joel-mcdade
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of its intracellular kinase domain (Park CJ et 

al., 2012), Xa21—a cell membrane receptor — 
perceives the presence of Xoo and relays the 

signal to the nucleus through multi-step signal 

cascades involving some key proteins such as 
XA21 Binding Protein 3 (XB3) (Wang et al., 

2006) , mitogen-activated protein kinase 5 

(MAPK5), MAPK12 (Seo et al., 2011), and 

transcription factors (TFs) including OsWRKY62 

and OsWRKY76 (Seo et al., 2011; Peng et al., 

2008 and Peng et al., 2010 ) in the nucleus. 

Some Xoo resistant genes, such as xa5, are 
transcription factors (Jiang et al., 2006 and 

Iyer et al., 2004). Furthermore, many effectors 

from Xoo belong to the transcription activator-
like (TAL) family, which facilitate injection into 

rice cells to activate susceptibility genes in the 

host to exert their functions15. The known Xoo 

effectors include avrxa516, avrXa717, 
avrXa1018 and avrXa2719, which trigger xa5-, 

Xa7-, Xa10- and Xa27-mediated resistance, 

respectively.  

In fact, CRISPR has already been used to 

engineer the genome of many plant species, 

including commonly used model organisms like 

Arabidopsis and Medicago truncatula and 
several crop species including potato, corn, 

tomato, wheat, mushroom, and rice (Khatodia 

et al., 2016; Yara A et al., 2007; Miao J et al., 
2013; Wang C et al., 2015). Alternatively, 

Cas9-mediated DSBs can be repaired by 

homology-directed repair (HDR) using an 
homologous DNA repair template, thus 

allowing precise gene editing by incorporating 

genetic changes into the repair template. HDR 

can introduce gene sequences for protein 
epitope tags, delete genes, make point 

mutations, or alter enhancer and promoter 

activities. In anticipation of adapting this 
technology for gene therapy in human somatic 

cells, much focus has been placed on increasing 

the fidelity of CRISPR-Cas9 and increasing 
HDR efficiency to improve precision genome 

editing (Salsman and Dellaire 2017). The type-

II CRISPR/Cas RNA-guided nucleases are the 

most recent addition to the tool kit of sequence-
specific nucleases. Intense interest has been 

focused on the CRISPR/Cas9 system from 

Streptococcus pyogenes following initial reports 
of its successful use for gene editing (Jinek et 

al., 2012). 

Cai et al., 2015 successfully applied type II 

CRISPR/Cas9 system to generate and estimate 
genome editing in the desired target genes in 

soybean (Glycine max (L.) Merrill.). The single-

guide RNA (sg RNA) and Cas9 cassettes were 

assembled on one vector to improve 
transformation efficiency, and they designed a 

sg RNA that targeted a transgene (bar) and six 

sg RNAs that targeted different sites of two 
endogenous soybean genes (GmFEI2 and 

GmSHR). The targeted DNA mutations were 

detected in soybean hairy roots. The results 

demonstrated that this customized CRISPR/ 
Cas9 system shared the same efficiency for both 

endogenous and exogenous genes in soybean 

hairy roots. The team also performed 
experiments to detect the potential of CRISPR/ 

Cas9 system to simultaneously edit two 

endogenous soybean genes using only one 
customized sg RNA. 

Parthenocarpy in horticultural crop plants is an 

important trait with agricultural value for 

various industrial purposes as well as direct 
eating quality. Risa Ueta et al., 2017optimized 

the CRISPR/Cas9 system to introduce somatic 

mutations effectively into SlIAA9—a key gene 
controlling parthenocarpy—with mutation rates 

of up to 100% in the T0 generation. Furthermore, 

they analysed off-target mutations using deep 

sequencing indicated that our customized 
gRNAs induced no additional mutations in the 

host genome. Regenerated mutants exhibited 

morphological changes in leaf shape and 
seedless fruit—a characteristic of parthenocarpic 

tomato. And the segregated next generation (T1) 

also showed a severe phenotype associated with 
the homozygous mutated genome. 

As per Damiano Martignago, using CRISPR, 

scientists from the Chinese Academy of 

Sciences produced a wheat variety resistant to 
powdery mildew, one of the major diseases in 

wheat. Similarly, another Chinese research 

group exploited CRISPR to produce a rice line 
with enhanced rice blast resistance that will help 

to reduce the amount of fungicides used in rice 

farming. CRISPR/Cas9 has also been already 
applied to maize, tomato, potato, orange, lettuce, 

soybean and other legumes. Recently, scientists 

showed that is possible to edit the genome of 

plants without adding any foreign DNA and 
without the need for bacteria- or virus-mediated 

plant transformation. Instead, a pre-assembled 

Cas9-gRNA rib nucleoprotein (RNP) is 
delivered to plant cells in vitro, which can edit 

the desired region of the genome before being 

rapidly degraded by the plant endogenous 

proteases and nucleases. This non-GM approach 
can also reduce the potential of off-target 

editing, because of the minimal time that the 
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RNP is present inside the cell before being 

degraded. RNP-based genome editing has been 
already applied to tobacco plants, rice, and 

lettuce, as well as very recently to maize. 

Editing plant genomes without introducing 
foreign DNA into cells may alleviate regulatory 

concerns related to genetically modified plants. 

Je Wook Woo et al., 2015 transfected 

preassembled complexes of purified Cas9 
protein and guide RNA into plant protoplasts of 

Arabidopsis thaliana, tobacco, lettuce and rice 

and achieved targeted mutagenesis in regenerated 
plants at frequencies of up to 46%. The targeted 

sites contained germline-transmissible small 

insertions or deletions that are indistinguishable 
from naturally occurring genetic variation. If 

anyone thinking about GMOs and the Flavr 

Savr Tomato, plants are somehow always in the 

first row when it comes to genetic modification. 
It is no different with CRISPR. Researchers are 

currently experimenting with ways to improve 

crop disease resistance and environmental stress 
tolerance using the gene-editing tool (Boyd LA 

et al., 2013). A research team from Rutgers is 

working on a long-term project to genetically 

modify wine grapes and turfgrass in such a way 
that the methods can be implemented in a 

variety of other crops. Imagine having jasmines 

blossoming the whole year in Scandinavian 
countries or harvest pumpkins in February.  

Undoubtedly, crop biologists are striving hard to 

engineer resistance against diseases, enhancing 
tolerance to low precipitation or survival under 

degraded rhizosphere by introducing 

advantageous genes taken from other varieties 

of similar species (Noman et al., 2016). In 
agriculture, CRISPR-Cas9 is presently being 

employed to knock-out unwanted genes from 

crops to promote preferable traits. For example, 
Chinese researchers developed wheat line 

resistant to powdery mildew. Genome editing 

may escort to a few surprising developments in 
agriculture. Different allergy causing proteins 

have been detected in peanuts (Hourihane et 

al., 1997; Skolnick et al., 2001). Getting rid of 

these proteins is not easy. But new technology 
may likely to offer allergy-free peanuts. CRISPR-

Cas9 technique advocates important changes in 

plant genome within our access. Gene editing 
can help in overcoming a hurdle that is 

polyploid plants showing duplicate genome 

copies, i.e., Wheat. Successful editing of wheat 

genome in China demonstrates that CRISPR-
Cas9 is definitely ―multiplexed‖ with enormous 

ability to affect all gene copies or to target 

several genes at the same time. With 

simultaneous modification of multiple traits, the 
CRISPR-Cas9 system would provide highly 

competent method to pyramid breeding ( 

Bortesi and Fischer, 2015). Negative regulators 
of plant disease resistance and grain development 

can be amended for increasing yield and 

granting resistance to the host plant against 

targeted pathogens (Song et al., 2016). 
Researchers working in polyploid crops like 

sugarcane, wheat need information about 

variation of sequence among diverse allelic 
forms to design precise gRNAs (Mohan, 2016).  

One drawback to the CRISPR/ Cas9 system in 

plants concerns off-target effects. To assess 
these effects in plants, whole genome sequencing 

is the current gold standard. We have unlimited 

possibilities. CRISPR helps us see that GMO/ 

non-GMO binaries are overly simplistic. This 
one tool can perform many DNA nips and tucks 

and can up-regulate or down-regulate genes in 

ways that are not transgenic — yet are by no 
means inconsequential. Many CRISPR edits; 

won’t involve any questions about foreign 

DNA, but will be equally dramatic in their 

effects. In crops and animals, ―gene knockouts‖ 
can eliminate genes that affect food quality, 

divert energy away from valuable end products, 

and confer susceptibility to crop diseases. Using 
the Cas9 enzyme’s powerful ability to enhance 

or suppress gene activity could touch on many 

important processes of crop and livestock 
metabolism, resistance and yield. 
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